Coordinate Geometry

Coordinate geometry describes everything related to the Cartesian plane and is therefore sometimes known as Cartesian geometry. Remember x and y coordinates? The Cartesian plane is the two-dimensional plane formed by the intersection of x and y.

Explore our app and discover over 50 million learning materials for free.

- Applied Mathematics
- Calculus
- Decision Maths
- Discrete Mathematics
- Geometry
- Logic and Functions
- Mechanics Maths
- Probability and Statistics
- Pure Maths
- ASA Theorem
- Absolute Convergence
- Absolute Value Equations and Inequalities
- Abstract algebra
- Addition and Multiplication of series
- Addition and Subtraction of Rational Expressions
- Addition, Subtraction, Multiplication and Division
- Algebra
- Algebra of limits
- Algebra over a field
- Algebraic Fractions
- Algebraic K-theory
- Algebraic Notation
- Algebraic Representation
- Algebraic curves
- Algebraic geometry
- Algebraic number theory
- Algebraic topology
- Analyzing Graphs of Polynomials
- Angle Measure
- Angles
- Angles in Polygons
- Approximation and Estimation
- Area and Perimeter of Quadrilaterals
- Area of Triangles
- Argand Diagram
- Arithmetic Sequences
- Associative algebra
- Average Rate of Change
- Banach algebras
- Basis
- Bijective Functions
- Bilinear forms
- Binomial Expansion
- Binomial Theorem
- Bounded Sequence
- C*-algebras
- Category theory
- Cauchy Sequence
- Cayley Hamilton Theorem
- Chain Rule
- Circle Theorems
- Circles
- Circles Maths
- Clifford algebras
- Cohomology theory
- Combinatorics
- Common Factors
- Common Multiples
- Commutative algebra
- Compact Set
- Completing the Square
- Complex Numbers
- Composite Functions
- Composition of Functions
- Compound Interest
- Compound Units
- Congruence Equations
- Conic Sections
- Connected Set
- Construction and Loci
- Continuity and Uniform convergence
- Continuity of derivative
- Continuity of real valued functions
- Continuous Function
- Convergent Sequence
- Converting Metrics
- Convexity and Concavity
- Coordinate Geometry
- Coordinates in Four Quadrants
- Coupled First-order Differential Equations
- Cubic Function Graph
- Data Transformations
- De Moivre's Theorem
- Deductive Reasoning
- Definite Integrals
- Derivative of a real function
- Deriving Equations
- Determinant Of Inverse Matrix
- Determinant of Matrix
- Determinants
- Diagonalising Matrix
- Differentiability of real valued functions
- Differential Equations
- Differential algebra
- Differentiation
- Differentiation Rules
- Differentiation from First Principles
- Differentiation of Hyperbolic Functions
- Dimension
- Direct and Inverse proportions
- Discontinuity
- Disjoint and Overlapping Events
- Disproof By Counterexample
- Distance from a Point to a Line
- Divergent Sequence
- Divisibility Tests
- Division algebras
- Double Angle and Half Angle Formulas
- Drawing Conclusions from Examples
- Eigenvalues and Eigenvectors
- Ellipse
- Elliptic curves
- Equation of Line in 3D
- Equation of a Perpendicular Bisector
- Equation of a circle
- Equations
- Equations and Identities
- Equations and Inequalities
- Equicontinuous families of functions
- Estimation in Real Life
- Euclidean Algorithm
- Evaluating and Graphing Polynomials
- Even Functions
- Exponential Form of Complex Numbers
- Exponential Rules
- Exponentials and Logarithms
- Expression Math
- Expressions and Formulas
- Faces Edges and Vertices
- Factorials
- Factoring Polynomials
- Factoring Quadratic Equations
- Factorising expressions
- Factors
- Fermat's Little Theorem
- Field theory
- Finding Maxima and Minima Using Derivatives
- Finding Rational Zeros
- Finding The Area
- First Fundamental Theorem
- First-order Differential Equations
- Forms of Quadratic Functions
- Fourier analysis
- Fractional Powers
- Fractional Ratio
- Fractions
- Fractions and Decimals
- Fractions and Factors
- Fractions in Expressions and Equations
- Fractions, Decimals and Percentages
- Function Basics
- Functional Analysis
- Functions
- Fundamental Counting Principle
- Fundamental Theorem of Algebra
- Generating Terms of a Sequence
- Geometric Sequence
- Gradient and Intercept
- Gram-Schmidt Process
- Graphical Representation
- Graphing Rational Functions
- Graphing Trigonometric Functions
- Graphs
- Graphs And Differentiation
- Graphs Of Exponents And Logarithms
- Graphs of Common Functions
- Graphs of Trigonometric Functions
- Greatest Common Divisor
- Grothendieck topologies
- Group Mathematics
- Group representations
- Growth and Decay
- Growth of Functions
- Gröbner bases
- Harmonic Motion
- Hermitian algebra
- Higher Derivatives
- Highest Common Factor
- Homogeneous System of Equations
- Homological algebra
- Homotopy theory
- Hopf algebras
- Hyperbolas
- Ideal theory
- Imaginary Unit And Polar Bijection
- Implicit differentiation
- Inductive Reasoning
- Inequalities Maths
- Infinite geometric series
- Injective functions
- Injective linear transformation
- Instantaneous Rate of Change
- Integers
- Integrating Ex And 1x
- Integrating Polynomials
- Integrating Trigonometric Functions
- Integration
- Integration By Parts
- Integration By Substitution
- Integration Using Partial Fractions
- Integration of Hyperbolic Functions
- Interest
- Invariant Points
- Inverse Hyperbolic Functions
- Inverse Matrices
- Inverse and Joint Variation
- Inverse functions
- Inverse of a Matrix and System of Linear equation
- Invertible linear transformation
- Iterative Methods
- Jordan algebras
- Knot theory
- L'hopitals Rule
- Lattice theory
- Law Of Cosines In Algebra
- Law Of Sines In Algebra
- Laws of Logs
- Leibnitz's Theorem
- Lie algebras
- Lie groups
- Limits of Accuracy
- Linear Algebra
- Linear Combination
- Linear Expressions
- Linear Independence
- Linear Systems
- Linear Transformation
- Linear Transformations of Matrices
- Location of Roots
- Logarithm Base
- Logic
- Lower and Upper Bounds
- Lowest Common Denominator
- Lowest Common Multiple
- Math formula
- Matrices
- Matrix Addition And Subtraction
- Matrix Calculations
- Matrix Determinant
- Matrix Multiplication
- Matrix operations
- Mean value theorem
- Metric and Imperial Units
- Misleading Graphs
- Mixed Expressions
- Modelling with First-order Differential Equations
- Modular Arithmetic
- Module theory
- Modulus Functions
- Modulus and Phase
- Monoidal categories
- Monotonic Function
- Multiples of Pi
- Multiplication and Division of Fractions
- Multiplicative Relationship
- Multiplicative ideal theory
- Multiplying And Dividing Rational Expressions
- Natural Logarithm
- Natural Numbers
- Non-associative algebra
- Normed spaces
- Notation
- Number
- Number Line
- Number Systems
- Number Theory
- Number e
- Numerical Methods
- Odd functions
- Open Sentences and Identities
- Operation with Complex Numbers
- Operations With Matrices
- Operations with Decimals
- Operations with Polynomials
- Operator algebras
- Order of Operations
- Orthogonal groups
- Orthogonality
- Parabola
- Parallel Lines
- Parametric Differentiation
- Parametric Equations
- Parametric Hyperbolas
- Parametric Integration
- Parametric Parabolas
- Partial Fractions
- Pascal's Triangle
- Percentage
- Percentage Increase and Decrease
- Perimeter of a Triangle
- Permutations and Combinations
- Perpendicular Lines
- Points Lines and Planes
- Pointwise convergence
- Poisson algebras
- Polynomial Graphs
- Polynomial rings
- Polynomials
- Powers Roots And Radicals
- Powers and Exponents
- Powers and Roots
- Prime Factorization
- Prime Numbers
- Problem-solving Models and Strategies
- Product Rule
- Proof
- Proof and Mathematical Induction
- Proof by Contradiction
- Proof by Deduction
- Proof by Exhaustion
- Proof by Induction
- Properties of Determinants
- Properties of Exponents
- Properties of Riemann Integral
- Properties of dimension
- Properties of eigenvalues and eigenvectors
- Proportion
- Proving an Identity
- Pythagorean Identities
- Quadratic Equations
- Quadratic Function Graphs
- Quadratic Graphs
- Quadratic forms
- Quadratic functions
- Quadrilaterals
- Quantum groups
- Quotient Rule
- Radians
- Radical Functions
- Rates of Change
- Ratio
- Ratio Fractions
- Ratio and Root test
- Rational Exponents
- Rational Expressions
- Rational Functions
- Rational Numbers and Fractions
- Ratios as Fractions
- Real Numbers
- Rearrangement
- Reciprocal Graphs
- Recurrence Relation
- Recursion and Special Sequences
- Reduced Row Echelon Form
- Reducible Differential Equations
- Remainder and Factor Theorems
- Representation Of Complex Numbers
- Representation theory
- Rewriting Formulas and Equations
- Riemann integral for step function
- Riemann surfaces
- Riemannian geometry
- Ring theory
- Roots Of Unity
- Roots of Complex Numbers
- Roots of Polynomials
- Rounding
- SAS Theorem
- SSS Theorem
- Scalar Products
- Scalar Triple Product
- Scale Drawings and Maps
- Scale Factors
- Scientific Notation
- Second Fundamental Theorem
- Second Order Recurrence Relation
- Second-order Differential Equations
- Sector of a Circle
- Segment of a Circle
- Sequence and series of real valued functions
- Sequence of Real Numbers
- Sequences
- Sequences and Series
- Series Maths
- Series of non negative terms
- Series of real numbers
- Sets Math
- Similar Triangles
- Similar and Congruent Shapes
- Similarity and diagonalisation
- Simple Interest
- Simple algebras
- Simplifying Fractions
- Simplifying Radicals
- Simultaneous Equations
- Sine and Cosine Rules
- Small Angle Approximation
- Solving Linear Equations
- Solving Linear Systems
- Solving Quadratic Equations
- Solving Radical Inequalities
- Solving Rational Equations
- Solving Simultaneous Equations Using Matrices
- Solving Systems of Inequalities
- Solving Trigonometric Equations
- Solving and Graphing Quadratic Equations
- Solving and Graphing Quadratic Inequalities
- Spanning Set
- Special Products
- Special Sequences
- Standard Form
- Standard Integrals
- Standard Unit
- Stone Weierstrass theorem
- Straight Line Graphs
- Subgroup
- Subsequence
- Subspace
- Substraction and addition of fractions
- Sum and Difference of Angles Formulas
- Sum of Natural Numbers
- Summation by Parts
- Supremum and Infimum
- Surds
- Surjective functions
- Surjective linear transformation
- System of Linear Equations
- Tables and Graphs
- Tangent of a Circle
- Taylor theorem
- The Quadratic Formula and the Discriminant
- Topological groups
- Torsion theories
- Transformations
- Transformations of Graphs
- Transformations of Roots
- Translations of Trigonometric Functions
- Triangle Rules
- Triangle trigonometry
- Trigonometric Functions
- Trigonometric Functions of General Angles
- Trigonometric Identities
- Trigonometric Ratios
- Trigonometry
- Turning Points
- Types of Functions
- Types of Numbers
- Types of Triangles
- Uniform convergence
- Unit Circle
- Units
- Universal algebra
- Upper and Lower Bounds
- Valuation theory
- Variables in Algebra
- Vector Notation
- Vector Space
- Vector spaces
- Vectors
- Verifying Trigonometric Identities
- Volumes of Revolution
- Von Neumann algebras
- Writing Equations
- Writing Linear Equations
- Zariski topology
- Statistics
- Theoretical and Mathematical Physics

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmeldenNie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmeldenCoordinate geometry describes everything related to the Cartesian plane and is therefore sometimes known as Cartesian geometry. Remember x and y coordinates? The Cartesian plane is the two-dimensional plane formed by the intersection of x and y.

Coordinate geometry is a very important study as it allows us to develop graphical representations for different things such as parallel and perpendicular lines and curves we couldn't normally graph.

We split Coordinate Geometry into three key sections:

- STRAIGHT LINE GRAPHS - Understanding how gradients work and how we can use this in modelling. As well as understanding gradients of parallel and perpendicular lines.
- CIRCLES - Understand how algebraic methods such as completing the square can help us find the radius and centre of a circle. Also understanding how to find a tangent to a circle using methods adopted from straight line graphs.
- PARAMETRIC EQUATIONS - Understanding how we can use one variable to describe what two variables do and understanding how we can find equations for graphs we normally wouldn't be able to find by just looking at the graph.

Let's look at these in a bit more detail.

In order to understand coordinate geometry, we will look at straight line graphs in a lot of detail, starting with calculating gradients and intercepts. Then we will move on to parallel and perpendicular lines. Finally, we will start modeling using straight line graphs.

Here's is an example of a question involving straight line graphs. This question will require calculating the gradient.

The amount of money an ice-cream van makes in a day can be modeled as \(y = 5s-12\). Where s is the amount of ice creams sold and y is the amount of money made in pounds.

Find the price of each ice cream.

Calculate the amount of ice cream that needs to be sold so that the ice cream van doesn't make a loss.

SOLUTION: 1. The gradient of this line is the money made from sales. Remember, in a graph, m is the gradient.\(y = mx+c\)Therefore the gradient of this graph is 5. So each sale is £5. To not make a loss \(5s-12 \geq 0\) We can solve this by saying \(5s \geq 12\)

Therefore: \(s \geq 2.4\) So at least 3 sales must be made.Circles are an important part of coordinate geometry. We can use information about circles along with other theories of coordinate geometry to solve more complicated problems.

Remember, a circle with radius r and center (a, b) has an equation: \((x-a)^2 + (y-b)^2 = r^2\)

A circle has an equation \((x-2)^2 + (y-4)^2 = 25 \qquad (5,8)\)

This is a graphical representation of the circle and perpendicular line:

A graph of a circle and the tangent lineParametric equations represent everything in terms of one variable. The variable normally used is t.

This is because there are a lot of more complicated equations where it is better to represent each x and y in terms of the same variable.

Here's an example of a set of parametric equations.

\(x = 2\cos(t); \space y = 2\sin(t)\)This is the parameterization of a circle as:

\(x^2+y^2 = (2\cos(t))^2 + (2\sin(t))^2 = 4 \cos^2(t) + 4 \sin^2(t) = 4(\sin^2(t) + \cos^2(t)) = 4(1)= 4\)

Below is an example of a parametric equations question.

A curve C contains the following parametric equations.

\(x = 4\cos(t+\frac{\pi}{6}); \space y = 2\sin(t)\)Prove that \(x + y = 2\sqrt3 \cos(t)\)

Show that the Cartesian equation of C is \((x+y)^2 +ay^2 = b\) where a and b are constants to be found.

SOLUTION:

Well \(x+y = 4\cos(t+\frac{\pi}{6}) + 2\sin t\).

By addition formula

\(4 \cos(t+\frac{\pi}{6}) = 4\cos(t)\cos(\frac{\pi}{6})-4\sin(t)\sin(\frac{\pi}{6})4\cos(t + \frac{\pi}{6}) = 4\frac{\sqrt3}{2} \cos(t) 2\sin(t) 4\cos(t+\frac{\pi}{6}) = 2\sqrt{3} \cos(t) -2\sin(t)4\cos(t+\frac{\pi}{6}) +2\sin(t) = 2\sqrt3 \cos(t) - 2\sin(t)+2\sin(t) = 2 \sqrt3 \cos(t)\)

2.

\((x+y)^2 = (2\sqrt3 \cos(t))^2 = 12 \cos^2{t}y^2 = 4\sin^2{t} 12\cos^2{t}+4a(\sin^2{t}) = b\)

By \(\sin^2{t} + \cos^2{t} = 1\):

\(12\cos^2{t}+12\sin^2{t} = 124a = 12 \rightarrow a = 3b =12\)

Straight line graphs are decided by a gradient and the y-intercept.

Parallel and perpendicular lines are decided by gradients.

Parallel lines contain the same gradient.

Perpendicular lines have gradients which product -1.

Circle theorems can be used to help find equations of lines on a Cartesian plane.

Coordinate geometry ties together geometrical concepts and rules of lines in Cartesian coordinates.

Parametric Equations involve writing everything in terms of one variable.

Coordinate geometry is the study of the Cartesian plane.

A graph with the equation y=mx+c.

Two lines that contain the same gradient and never meet.

A radius.

What is the radius of a circle?

The distance between the centre of the circle and the circumference.

What is a sector?

An area bordered by two radii.

What is a chord?

A line that goes from one side of circumference to the other without going through the centre.

What is a segment?

An area bordered by a chord or a circumference.

What is a tangent?

A line outside of the circle that touches the circumference of a circle at one point.

What is an arc?

A section of the circumference.

Already have an account? Log in

Open in App
More about Coordinate Geometry

The first learning app that truly has everything you need to ace your exams in one place

- Flashcards & Quizzes
- AI Study Assistant
- Study Planner
- Mock-Exams
- Smart Note-Taking

Sign up to highlight and take notes. It’s 100% free.

Save explanations to your personalised space and access them anytime, anywhere!

Sign up with Email Sign up with AppleBy signing up, you agree to the Terms and Conditions and the Privacy Policy of StudySmarter.

Already have an account? Log in

Already have an account? Log in

The first learning app that truly has everything you need to ace your exams in one place

- Flashcards & Quizzes
- AI Study Assistant
- Study Planner
- Mock-Exams
- Smart Note-Taking

Sign up with Email

Already have an account? Log in