Proof

A **proof ** is a structured argument that follows a set of logical steps. It sets out to prove if a **mathematical statement or conjecture** is true using mathematical facts or theorems. Once a conjecture has been proved, it becomes a **theorem** . An example of a theorem is the fact that an even Number squared is even.

Explore our app and discover over 50 million learning materials for free.

- Applied Mathematics
- Calculus
- Decision Maths
- Discrete Mathematics
- Geometry
- Logic and Functions
- Mechanics Maths
- Probability and Statistics
- Pure Maths
- ASA Theorem
- Absolute Convergence
- Absolute Value Equations and Inequalities
- Abstract algebra
- Addition and Multiplication of series
- Addition and Subtraction of Rational Expressions
- Addition, Subtraction, Multiplication and Division
- Algebra
- Algebra of limits
- Algebra over a field
- Algebraic Fractions
- Algebraic K-theory
- Algebraic Notation
- Algebraic Representation
- Algebraic curves
- Algebraic geometry
- Algebraic number theory
- Algebraic topology
- Analyzing Graphs of Polynomials
- Angle Measure
- Angles
- Angles in Polygons
- Approximation and Estimation
- Area and Perimeter of Quadrilaterals
- Area of Triangles
- Argand Diagram
- Arithmetic Sequences
- Associative algebra
- Average Rate of Change
- Banach algebras
- Basis
- Bijective Functions
- Bilinear forms
- Binomial Expansion
- Binomial Theorem
- Bounded Sequence
- C*-algebras
- Category theory
- Cauchy Sequence
- Cayley Hamilton Theorem
- Chain Rule
- Circle Theorems
- Circles
- Circles Maths
- Clifford algebras
- Cohomology theory
- Combinatorics
- Common Factors
- Common Multiples
- Commutative algebra
- Compact Set
- Completing the Square
- Complex Numbers
- Composite Functions
- Composition of Functions
- Compound Interest
- Compound Units
- Congruence Equations
- Conic Sections
- Connected Set
- Construction and Loci
- Continuity and Uniform convergence
- Continuity of derivative
- Continuity of real valued functions
- Continuous Function
- Convergent Sequence
- Converting Metrics
- Convexity and Concavity
- Coordinate Geometry
- Coordinates in Four Quadrants
- Coupled First-order Differential Equations
- Cubic Function Graph
- Data Transformations
- De Moivre's Theorem
- Deductive Reasoning
- Definite Integrals
- Derivative of a real function
- Deriving Equations
- Determinant Of Inverse Matrix
- Determinant of Matrix
- Determinants
- Diagonalising Matrix
- Differentiability of real valued functions
- Differential Equations
- Differential algebra
- Differentiation
- Differentiation Rules
- Differentiation from First Principles
- Differentiation of Hyperbolic Functions
- Dimension
- Direct and Inverse proportions
- Discontinuity
- Disjoint and Overlapping Events
- Disproof By Counterexample
- Distance from a Point to a Line
- Divergent Sequence
- Divisibility Tests
- Division algebras
- Double Angle and Half Angle Formulas
- Drawing Conclusions from Examples
- Eigenvalues and Eigenvectors
- Ellipse
- Elliptic curves
- Equation of Line in 3D
- Equation of a Perpendicular Bisector
- Equation of a circle
- Equations
- Equations and Identities
- Equations and Inequalities
- Equicontinuous families of functions
- Estimation in Real Life
- Euclidean Algorithm
- Evaluating and Graphing Polynomials
- Even Functions
- Exponential Form of Complex Numbers
- Exponential Rules
- Exponentials and Logarithms
- Expression Math
- Expressions and Formulas
- Faces Edges and Vertices
- Factorials
- Factoring Polynomials
- Factoring Quadratic Equations
- Factorising expressions
- Factors
- Fermat's Little Theorem
- Field theory
- Finding Maxima and Minima Using Derivatives
- Finding Rational Zeros
- Finding The Area
- First Fundamental Theorem
- First-order Differential Equations
- Forms of Quadratic Functions
- Fourier analysis
- Fractional Powers
- Fractional Ratio
- Fractions
- Fractions and Decimals
- Fractions and Factors
- Fractions in Expressions and Equations
- Fractions, Decimals and Percentages
- Function Basics
- Functional Analysis
- Functions
- Fundamental Counting Principle
- Fundamental Theorem of Algebra
- Generating Terms of a Sequence
- Geometric Sequence
- Gradient and Intercept
- Gram-Schmidt Process
- Graphical Representation
- Graphing Rational Functions
- Graphing Trigonometric Functions
- Graphs
- Graphs And Differentiation
- Graphs Of Exponents And Logarithms
- Graphs of Common Functions
- Graphs of Trigonometric Functions
- Greatest Common Divisor
- Grothendieck topologies
- Group Mathematics
- Group representations
- Growth and Decay
- Growth of Functions
- Gröbner bases
- Harmonic Motion
- Hermitian algebra
- Higher Derivatives
- Highest Common Factor
- Homogeneous System of Equations
- Homological algebra
- Homotopy theory
- Hopf algebras
- Hyperbolas
- Ideal theory
- Imaginary Unit And Polar Bijection
- Implicit differentiation
- Inductive Reasoning
- Inequalities Maths
- Infinite geometric series
- Injective functions
- Injective linear transformation
- Instantaneous Rate of Change
- Integers
- Integrating Ex And 1x
- Integrating Polynomials
- Integrating Trigonometric Functions
- Integration
- Integration By Parts
- Integration By Substitution
- Integration Using Partial Fractions
- Integration of Hyperbolic Functions
- Interest
- Invariant Points
- Inverse Hyperbolic Functions
- Inverse Matrices
- Inverse and Joint Variation
- Inverse functions
- Inverse of a Matrix and System of Linear equation
- Invertible linear transformation
- Iterative Methods
- Jordan algebras
- Knot theory
- L'hopitals Rule
- Lattice theory
- Law Of Cosines In Algebra
- Law Of Sines In Algebra
- Laws of Logs
- Leibnitz's Theorem
- Lie algebras
- Lie groups
- Limits of Accuracy
- Linear Algebra
- Linear Combination
- Linear Expressions
- Linear Independence
- Linear Systems
- Linear Transformation
- Linear Transformations of Matrices
- Location of Roots
- Logarithm Base
- Logic
- Lower and Upper Bounds
- Lowest Common Denominator
- Lowest Common Multiple
- Math formula
- Matrices
- Matrix Addition And Subtraction
- Matrix Calculations
- Matrix Determinant
- Matrix Multiplication
- Matrix operations
- Mean value theorem
- Metric and Imperial Units
- Misleading Graphs
- Mixed Expressions
- Modelling with First-order Differential Equations
- Modular Arithmetic
- Module theory
- Modulus Functions
- Modulus and Phase
- Monoidal categories
- Monotonic Function
- Multiples of Pi
- Multiplication and Division of Fractions
- Multiplicative Relationship
- Multiplicative ideal theory
- Multiplying And Dividing Rational Expressions
- Natural Logarithm
- Natural Numbers
- Non-associative algebra
- Normed spaces
- Notation
- Number
- Number Line
- Number Systems
- Number Theory
- Number e
- Numerical Methods
- Odd functions
- Open Sentences and Identities
- Operation with Complex Numbers
- Operations With Matrices
- Operations with Decimals
- Operations with Polynomials
- Operator algebras
- Order of Operations
- Orthogonal groups
- Orthogonality
- Parabola
- Parallel Lines
- Parametric Differentiation
- Parametric Equations
- Parametric Hyperbolas
- Parametric Integration
- Parametric Parabolas
- Partial Fractions
- Pascal's Triangle
- Percentage
- Percentage Increase and Decrease
- Perimeter of a Triangle
- Permutations and Combinations
- Perpendicular Lines
- Points Lines and Planes
- Pointwise convergence
- Poisson algebras
- Polynomial Graphs
- Polynomial rings
- Polynomials
- Powers Roots And Radicals
- Powers and Exponents
- Powers and Roots
- Prime Factorization
- Prime Numbers
- Problem-solving Models and Strategies
- Product Rule
- Proof
- Proof and Mathematical Induction
- Proof by Contradiction
- Proof by Deduction
- Proof by Exhaustion
- Proof by Induction
- Properties of Determinants
- Properties of Exponents
- Properties of Riemann Integral
- Properties of dimension
- Properties of eigenvalues and eigenvectors
- Proportion
- Proving an Identity
- Pythagorean Identities
- Quadratic Equations
- Quadratic Function Graphs
- Quadratic Graphs
- Quadratic forms
- Quadratic functions
- Quadrilaterals
- Quantum groups
- Quotient Rule
- Radians
- Radical Functions
- Rates of Change
- Ratio
- Ratio Fractions
- Ratio and Root test
- Rational Exponents
- Rational Expressions
- Rational Functions
- Rational Numbers and Fractions
- Ratios as Fractions
- Real Numbers
- Rearrangement
- Reciprocal Graphs
- Recurrence Relation
- Recursion and Special Sequences
- Reduced Row Echelon Form
- Reducible Differential Equations
- Remainder and Factor Theorems
- Representation Of Complex Numbers
- Representation theory
- Rewriting Formulas and Equations
- Riemann integral for step function
- Riemann surfaces
- Riemannian geometry
- Ring theory
- Roots Of Unity
- Roots of Complex Numbers
- Roots of Polynomials
- Rounding
- SAS Theorem
- SSS Theorem
- Scalar Products
- Scalar Triple Product
- Scale Drawings and Maps
- Scale Factors
- Scientific Notation
- Second Fundamental Theorem
- Second Order Recurrence Relation
- Second-order Differential Equations
- Sector of a Circle
- Segment of a Circle
- Sequence and series of real valued functions
- Sequence of Real Numbers
- Sequences
- Sequences and Series
- Series Maths
- Series of non negative terms
- Series of real numbers
- Sets Math
- Similar Triangles
- Similar and Congruent Shapes
- Similarity and diagonalisation
- Simple Interest
- Simple algebras
- Simplifying Fractions
- Simplifying Radicals
- Simultaneous Equations
- Sine and Cosine Rules
- Small Angle Approximation
- Solving Linear Equations
- Solving Linear Systems
- Solving Quadratic Equations
- Solving Radical Inequalities
- Solving Rational Equations
- Solving Simultaneous Equations Using Matrices
- Solving Systems of Inequalities
- Solving Trigonometric Equations
- Solving and Graphing Quadratic Equations
- Solving and Graphing Quadratic Inequalities
- Spanning Set
- Special Products
- Special Sequences
- Standard Form
- Standard Integrals
- Standard Unit
- Stone Weierstrass theorem
- Straight Line Graphs
- Subgroup
- Subsequence
- Subspace
- Substraction and addition of fractions
- Sum and Difference of Angles Formulas
- Sum of Natural Numbers
- Summation by Parts
- Supremum and Infimum
- Surds
- Surjective functions
- Surjective linear transformation
- System of Linear Equations
- Tables and Graphs
- Tangent of a Circle
- Taylor theorem
- The Quadratic Formula and the Discriminant
- Topological groups
- Torsion theories
- Transformations
- Transformations of Graphs
- Transformations of Roots
- Translations of Trigonometric Functions
- Triangle Rules
- Triangle trigonometry
- Trigonometric Functions
- Trigonometric Functions of General Angles
- Trigonometric Identities
- Trigonometric Ratios
- Trigonometry
- Turning Points
- Types of Functions
- Types of Numbers
- Types of Triangles
- Uniform convergence
- Unit Circle
- Units
- Universal algebra
- Upper and Lower Bounds
- Valuation theory
- Variables in Algebra
- Vector Notation
- Vector Space
- Vector spaces
- Vectors
- Verifying Trigonometric Identities
- Volumes of Revolution
- Von Neumann algebras
- Writing Equations
- Writing Linear Equations
- Zariski topology
- Statistics
- Theoretical and Mathematical Physics

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmeldenNie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmeldenA **proof ** is a structured argument that follows a set of logical steps. It sets out to prove if a **mathematical statement or conjecture** is true using mathematical facts or theorems. Once a conjecture has been proved, it becomes a **theorem** . An example of a theorem is the fact that an even Number squared is even.

Theorems are based on axioms. **Axioms** are defined as a statement or proposition on which a structure is based. Essentially, these are things that we assume to be true and that we do not need to prove. Some examples of axioms are:

All multiples of 2 are even.

Addition is commutative: \(a + b = b + a\)

Multiplication is commutative: \(a \cdot b = b \cdot a\)

## What must you do in a proof?

The key elements to writing a thorough proof are:

State any information that you are using.

Make sure every step logically follows on from the step before.

Make sure all possible cases are covered, eg if you are asked to prove for all numbers and you have only proven for odd numbers, then you have to prove for even numbers too.

Finish the proof with a statement.

## What are the different types of proof?

The different types of proof are defined according to the method being used to do the proof. The main methods that you can find are:

Proof by counterexample

**Proof by Deduction** is the most commonly used method of proof, and it involves starting from known facts or theorems, then going through a logical sequence of steps that show the reasoning that leads you to reach a conclusion that proves the original conjecture.

The equation id="2904200" role="math" \( kx^2 - 2kx + 4 = 0 \) has no real roots. Prove that \(k\) satisfies the inequalityid="2904204" role="math" \(0 \leq k < 4\)

This is going to involve using the discriminant.

When something has no real roots, the value of \(b^{2} - 4 \cdot a \cdot c < 0\)So let's just substitute values of \(a\), \(b\) and \( c \).

\(a = k, \; b = -2k\) other \(c = 4\)\((-2k)^2 - 4(k)(4) = 4k^2 - 16k\)So \(4k^2 - 16k < 0\), as this has no real roots, the value of the discriminant has got to be less than 0.

\(k(4k-16)<0\)

So if we sketch this out, we get:

You can see in the graph that \(k(4k-16)<0\)when the curve is below the x-axis . This happens when\(0 < k < 4\)

However, when \(k = 0\) the discriminant formula is no longer valid.

If we substitute \(k = 0\) in the original equation\(kx^2-2kx+4=0\)\((0)x^2 - 2(0)x + 4 = 0\) \(4 = 0\)**This is ****not possible, so there are no real roots**

Therefore \(0 \leq k < 4\) as required.

Check out the Proof by Deduction article for more examples.

An **identity** is a mathematical expression that is always true. It is a statement showing that the two sides of the expression are identical. To **prove an identity** , simply manipulate one side of the expression algebraically until it matches the other side. A symbol you will find in identities is ≡, which means 'is always equal to'. Here are a couple of examples:

1. Prove that \((2x + 3)(x + 4)(x - 1) = 2x^3 + 9x^2 + x - 12\)

Expand the brackets on the left-hand side of the identity and combine like terms

\((2x + 3)(x + 4)(x - 1) = (2x + 3)(x^{2} - x + 4x - 4)\) \(= (2x + 3)(x^2 + 3x - 4)\) \(= 2x^3 + 6x^2 - 8x + 3x^2 + 9x - 12\) \(= 2x^3 + 9x^2 + x - 12\)

Therefore, we can say that \((2x + 3)(x + 4)(x - 1) \equiv 2x^3 + 9x^2 + x - 12\)

2. You can also be asked to prove **Trigonometric Identities:**

Prove that \(\sin^{2}\theta + \cos^{2}\theta = 1\)

If we write out trigonometric expressions for \( a \) and \( b \):

\(a = c \cdot \sin \theta\) \(b = c \cdot \cos \theta\)

By Pythagoras \(a^2 + b^2 = c^2\)

So substituting expressions in for \(a\) and \(b\):\((c \cdot \sin{\theta})^2 + (c \cdot \cos{\theta})^2 = c^2 \cdot \sin^2{\theta} + c^2 \cdot cos^2{\theta}\) \(c^2 \sin^2{\theta} + c^2 \cdot \cos^2{\theta} = c^2\)

Factoring out \(c^2\):

\(c^2(\sin^2 \theta + \cos^2 \theta) = c^2\)Divide both sides by \(c^2\) (We can do this because \(c \neq 0\))

Therefore \(\sin^{2}\theta + \cos^{2}\theta = 1\)

Please refer to the Proving an Identity article to expand your knowledge on this topic.

A mathematical statement can be disproved by finding one counterexample. A **counterexample** is an example for which a statement is not true. Let's look at an example below:

Prove that the statement below is not true.

The sum of two square numbers is always a square Number.

We can prove this by counterexample, by finding a single example that proves that the statement is false. So, we need to find two square numbers that when added the result is not a square number. Let's try 4 and 9.

4 is a square number ( \(2^{2}\))

9 is a square number ( \(3^{2}\))

9 + 4 = 13

13 is not a square number.

So the statement is not true.

For more details and examples about this type of proof, check out the Disproof by Counterexample article.

**Proving by exhaustion** is done by considering every example possible and checking each case separately.

Prove that the sum of two consecutive square numbers between 1 and 81 is an odd number.

- The square numbers between 1 and 81 are:

4, 9, 16, 25, 36, 49, and 64.

- Now let's use Proof by Exhaustion, and find these sums.

4 + 9 = 13 (odd)

9 + 16 = 25 (odd)

16 + 25 = 41 (odd)

25 + 36 = 61 (odd)

36 + 49 = 85 (odd)

49 + 64 = 113 (odd)

All these numbers are odd, so the statement has been proved.

For more examples, have a look at the Proof by Exhaustion article.

**Proof by Contradiction** works slightly different. In this case, in order to prove a mathematical statement to be true, you will assume that the opposite of the statement must be false, and prove that it is actually false.

Prove that there are no Integers a and b for which \(5a + 10b = 1\)

**Assume the opposite:**Assume that we can find two Integers a and b that make the equation \(5a + 10b = 1\)true.- If that is the case, then we can divide both sides of the equation by 5:

\(\frac{5}{5} \cdot a + \frac{10}{5} \cdot b = \frac{1}{5}\) \( a + 2 \cdot b = \frac{1}{5} \)If a and b are Integers, then the result of \(a + 2b\) must be an integer too, therefore \(a + 2b\)cannot result in the fraction \(\frac{1}{5}\), which is what the equation states. Here we have a **contradiction** , which makes our assumption false.

- As we have proved the opposite statement to be false, the original statement is proved to be true. Therefore, we can say that the statement "There are no integers a and b for which \(5a + 10b = 1\)" is true.

To find out more about this type of proof, follow the link to the Proof by Contradiction article.

A proof is a sequence of logical steps used to prove a mathematical statement or conjecture.

Proof by deduction is the most commonly used method of proof, and it involves starting from known facts or theorems, then going through a logical sequence of steps to reach a conclusion that proves the original conjecture.

Proving identities is done by manipulating one side of the expression algebraically until it matches the other side.

Proof by counterexample is done by using a counterexample to prove that a statement is not true.

Proof by exhaustion is done by considering all possible cases and proving each case separately.

Proof by contradiction proves a mathematical statement to be true, by assuming that the opposite of the statement must be false, and proving that it is actually false.

Proof gives us evidence for our statements and the certainty that what we are using is accurate.

Prove that 2e + 1 is odd for all even numbers between 10 and 20 (e).

The even numbers are 12,14,16,18

When e = 12, 2e + 1 = 25

When e = 14, 2e + 1 = 29

When e = 16, 2e + 1 = 33

When e = 18, 2e + 1 = 37

These are all odd numbers.

Prove that any two consecutive positive integers under 5 sum an odd number.

The numbers are 1,2,3, and 4.

The sums we get are:

1 + 2 = 3

2 + 3 = 5

3 + 4 = 7

3,5, and 7 are all odd numbers.

Why does a counterexample disprove statements?

As statements need to be true for all values stated, so if it is untrue for one value, the statement is false.

What is proof in Maths?

A proof is a structured argument that follows a set of logical steps. It sets out to prove if a mathematical statement or conjecture is true using mathematical facts or theorems.

What is a theorem?

A theorem is a mathematical statement or conjecture that has been proved.

What are the key elements to writing a thorough proof?

The key elements to writing a thorough proof are:

- State any information that you are using.
- Make sure every step logically follows on from the step before.
- Make sure all possible cases are covered.
- Finish the proof with a statement.

Already have an account? Log in

Open in App
More about Proof

The first learning app that truly has everything you need to ace your exams in one place

- Flashcards & Quizzes
- AI Study Assistant
- Study Planner
- Mock-Exams
- Smart Note-Taking

Sign up to highlight and take notes. It’s 100% free.

Save explanations to your personalised space and access them anytime, anywhere!

Sign up with Email Sign up with AppleBy signing up, you agree to the Terms and Conditions and the Privacy Policy of StudySmarter.

Already have an account? Log in

Already have an account? Log in

The first learning app that truly has everything you need to ace your exams in one place

- Flashcards & Quizzes
- AI Study Assistant
- Study Planner
- Mock-Exams
- Smart Note-Taking

Sign up with Email

Already have an account? Log in